

This system has been tested according to NSF/ANSI 42 and 53 for reduction of the substances listed below in Table I & Table II. The concentration of the indicated substances in the water entering the system was reduced to a concentration less than or equal to the permissible limit for water leaving the system as specified in NSF/ANSI 42 and 53. This system is also tested to CSA B483.1

TABLE I

Contaminant	Influent Challenge Concentration	Reduction Requirement	Average Reduction Efficiency
Standard 42 – Aesthetic Effects.			
Taste, Odour, Chlorine Reduction	$2.0 \text{ mg/L} \pm 10\%$	≥ 50%	> 98%
Standard 53 – Health Effects.			
Cyst Reduction	Minimum 50,000/L	≥ 99.95%	≥ 99.95%
Standard 53 – Health Effects.			
Volatile Organic Chemical (VOC) Reduction(1)	0.298 mg/L	≥ 95%	> 95%
Standard 53 - Health Effects. Lead	0.15 mg/L ± 10%	≥ 93%	> 95%
Reduction	-		

VOC reduction means that the system reduces the concentration of all the contaminants listed in Table II by > 95%.

TABLE-II

IAPEL II				
alachlor	1,2-dichloroethane	1,1,2,2,-tetrachloroethane	tetrachloroethylene	
atrazine	1,1-dichloroethylene	heptachlor (H-34, Heptox)	toluene	
benzene	cis-1,2-dichloroethylene	heptachlor epoxide	2,4,5-TP (silvex)	
carbofuran	trans-1,2-dichloroethylene	hexachlorobutadiene	tribromoacetic acid	
carbon tetrachloride	1,2-dichloropropane	hexachlorocyclopentadiene	1,2,4-trichlorobenzene	
chlorobenzene	cis-1,3-dichloropropylene	lindane	1,1,1-trichloroethane	
chloropicrin	dinoseb	methoxychlor	1,1,2-trichloroethane	
2,4-D	endrin	pentachlorophenol	trichloroethylene	
dibromochloropropane (DBCP)	ethylbenzene	simazine	xylenes (total)	
o-dichlorobenzene	ethylene dibromide (EDB)	styrene	trihalomethanes (includes)	
p-dichlorobenzene	haloacetonitriles (HAN)	haloketones (HK)	chloroform (surrogate chemical)	
	bromochloroacetonitrile	1,1-dichloro-2-propanone	bromoform	
	dibromoacetonitrile	1,1,1-trichloro-2-propanone	bromodichloromethane	
	dichloroacetonitrile		chlorodibromomethane	
	trichloroacetonitrile			

- Do not use on water that is microbiologically unsafe without adequate disinfection before or after the unit. The system may be used on disinfected water that may contain filterable cysts
- All testing performed under standard laboratory conditions. Actual performance may vary.

Note: Contaminants reduced by this filter are not necessarily present in water. Individuals requiring water of specific microbiological purity should follow the advice of their doctor or local health unit.

Technical Specifications

Rated service flow - 0.75 US GPM (2.83 LPM)

- 4°C (39°F) min. to 38°C (100°F) max. Operating Temp

Working Pressure - 20 psi (137 kPa) min. to 100 psi (689 kPa) max*

QLV • 250 US gal (946 L) or 4 months for model QS1X & QSIMX • 350 US gal (1324 L) or 6 months for models QS1, QS1K & QSIM

*If water pressure can exceed 100 psi, a pressure regulator and water hammer arrestor must be installed before the filter. Recommended regulator setting is 60 - 75 psi.

Filter Cartridge

Model

General Operation, Monitor Function & Maintenance

See product manual for maintenance instructions. User is responsible for general maintenance.

Limited 1 year warranty. See product manual for details. For replacement parts contact Rainfresh.

Envirogard Products Limited

446, Major Mackenzie Drive East, Richmond Hill, ON L4C 1J2, CANADA

Rated Cartridge Life

Tel: (905) 884 9388 Fax: (905) 884 3532.

Web: www.rainfresh.ca

^{(1) -}Substantiated using chloroform reduction of 98.8% as a surrogate.